Зависимость удельного электрического сопротивления металлов от температуры

У металлов, не обладающих сверхпроводимостью, при низких температурах из-за наличия примесей наблюдается область 1 – область остаточного сопротивления, почти не зависящая от температуры (рис. 10.5). Остаточное сопротивление - rост  тем меньше, чем чище металл.

Рис. 10.5. Зависимость удельного сопротивления металла от температуры

Быстрый рост удельного сопротивления при низких температурах до температуры Дебая Qд может быть объяснен возбуждением новых частот тепловых колебаний решетки, при которых происходит рассеяние носителей заряда - область 2.

При Т > Qд, когда спектр колебаний возбужден полностью, увеличение амплитуды колебаний с ростом температуры приводит к линейному росту сопротивления примерно до Тпл - область 3. При нарушении периодичности структуры электрон испытывает рассеяние, приводящее  к изменению  направления движения, конечным длинам свободного пробега и проводимости  металла. Энергия  электронов  проводимости  в металлах составляет 3–15 эВ, что соответствует длинам волн 3–7 Å. Поэтому любые нарушения периодичности, обусловленные примесями, дефектами, поверхностью кристалла или тепловыми колебаниями атомов (фононами) вызывают рост удельного сопротивления металла.

Проведем качественный анализ температурной зависимости удельного сопротивления металлов.  Электронный газ в металлах является вырожденным и основным механизмом рассеяния электронов в области высоких температур является рассеяние на фононах.

При понижения температуры до абсолютного нуля сопротивление нормальных металлов стремится к постоянному значению - остаточному сопротивлению. Исключением из этого правила  являются сверхпроводящие  металлы и сплавы, в которых сопротивление исчезает ниже некоторой критической температуры Тсв (температура перехода в сверхпроводящее состояние).

При увеличении температуры, отклонение удельного сопротивления от линейной зависимости у большинства металлов наступает вблизи температуры плавления Тпл. Некоторое отступление от линейной зависимости может наблюдаться у ферромагнитных металлов, в  которых происходит дополнительное рассеяние электронов на нарушениях спинового порядка.

При достижении температуры плавления и переходе в жидкое состояние у большинства металлов наблюдается резкое увеличение удельного сопротивления и у некоторых его уменьшение. Если плавление металла или сплава сопровождается увеличением объема, то удельное сопротивление повышается в  два–четыре  раза (например, у ртути в 4 раза).

У металлов, объем которых при плавлении уменьшается,  наоборот, происходит понижение удельного сопротивления (у галлия на 53%, у сурьмы –29% и у висмута –54%) . Подобная аномалия может быть объяснена возрастанием плотности и модуля сжимаемости при переходе этих металлов из твердого в жидкое состояние. У некоторых расплавленных (жидких) металлов удельное  сопротивление с ростом температуры при постоянном объеме перестает расти,  у других оно растет более медленно, чем в твердом состоянии. Такие аномалии, по-видимому, можно связать с явлениями разупорядочения решетки, которые неодинаково происходят в различных металлах при переходе их из одного агрегатного состояния в другое.

Важной характеристикой металлов  является температурный коэффициент удельного электрического сопротивления, показывающий относительное изменение удельного сопротивления при изменении температуры на один Кельвин (градус)

(10.11)

ar-положительно, когда удельное сопротивление возрастает при повышении температуры. Очевидно, что величина  ar  также является функцией температуры.  В области 3 линейной зависимости  r(T) (см. рисунок 10.3) выполняется   соотношение:

r=r0[1+ar(T-T0)]

(10.12)

где  r0 и ar- удельное сопротивление и температурный коэффициент удельного сопротивления при температуре  T0, а  r - удельное сопротивление при температуре T. Экспериментальные данные показывают, что у большинства металлов ar при комнатной температуре примерно 0,004 К-1.У ферромагнитных металлов значение ar несколько выше.

Остаточное удельное сопротивление металлов. Как говорилось выше, сопротивление нормальных металлов стремится к постоянному значению — остаточному сопротивлению, по мере снижения температуры до абсолютного нуля. У нормальных металлов (не сверхпроводников) остаточное сопротивление возникает из-за рассеяния электронов проводимости статическими дефектами

Общую чистоту и совершенство металлического проводника можно определять отношением сопротивлений r=R273/R4,2K. Для  стандартной меди чистоты 99,999 это отношение составляет 1000. Бóльших значений r можно достигнуть путем дополнительных зонных переплавок и приготовлением образцов в виде монокристаллов.

Обширный экспериментальный материал содержит многочисленные данные по измерению сопротивления в металлах, вызванному наличием в них примесей. Можно отметить следующие наиболее характерные изменения в металлах, вызываемые легированием. Во-первых, не считая фононных возмущений, примесь является локальным нарушением идеальности решетки совершенное во всех других отношениях. Во-вторых, легирование влияет на зонную структуру, сдвигая энергию Ферми и изменяя плотность состоянии и эффективную массу, т.е. параметры, частично  определяющие  идеальное сопротивление металла. В-третьих, легирование может менять упругие константы и, соответственно, колебательный спектр решетки, оказывая влияние на идеальное сопротивление.

Общее удельное сопротивление проводника при температурах выше 0К складывается из остаточного сопротивления rост и удельного сопротивления, обусловленного рассеянием на тепловых колебаниях решетки - rТ

r=rост +rТ

(10.13)

Это соотношение известно как правило Матиссена об аддитивности удельного сопротивления. Часто, однако, наблюдаются значительные отклонения от правила Матиссена, причем некоторые их этих отклонений могут говорить не в пользу применимости основных факторов, влияющих на сопротивление металлов при введении в них примесей. Однако второй и третий факторы, отмеченные в начале этого раздела, также дают заметный вклад. Но, все же более сильное воздействие на сопротивление разбавленных твердых растворов оказывает первый  фактор.

Изменение остаточного сопротивления на 1 ат. % примеси для одновалентных металлов можно найти по правилу Линде, согласно которому

Δρост= а + b(ΔΖ)

(10.14)

где a и b - константы, зависящие от природы металла и периода, который занимает в Периодической системе элементов примесный атом; ΔΖ-разность валентностей металла-растворителя и примесного атома. Значительный практический интерес представляют расчеты сопротивления, обусловленные вакансиями и внедренными атомами. Такие дефекты легко возникает при облучении образца частицами высоких энергий, например нейтронами из реактора или ионами из ускорителя.